FUW TRENDS IN SCIENCE & TECHNOLOGY JOURNAL

(A Peer Review Journal)
e–ISSN: 2408–5162; p–ISSN: 2048–5170

FUW TRENDS IN SCIENCE & TECHNOLOGY JOURNAL

SORPTION EQUILIBRIUM, KINETICS AND THERMODYNAMIC STUDIES OF Pb (II), Ni (II) AND Co (II) IONS ADSORPTION IN AQUEOUS SOLUTION BY SWEET DATTOCK (Detarium microcarpum) SHELL
Pages: 61-69
J. Yisa*, J.O. Tijani and M.A. Ulasi


keywords: Sorption, equilibrium, kinetics, Detarium microcarpum shell, lead, nickel, cobalt.

Abstract

Chemically activated Detarium microcarpum shell was used as an adsorbent to remove Pb (II), Ni (II) and Co (II) ions from aqueous solution by batch adsorption technique. Batch adsorption experiments were performed as a function of pH, contact time, initial metal ion concentrations and temperature. The residual concentra tions were determined using Atomic Absorption Spectrophotometer (AAS). The optimum pH required for maximum adsorption was found to be 5.0 for Co (II) ion, 6.0 for Pb (II) and Ni (II) ion respectively. Equilibrium times of 60 minutes were attained for Ni (II) and Co (II) ions and 90 minutes for Pb (II) ions. The amount of metal ions adsorbed by the substrate increased with increase in initial metal ion concentration. The equilibrium data correlated well with Freundlich and Dubinin-Radushkevich (D-R) adsorption model. The trend of adsorption isotherm was Freundlich > Dubinin –Radushkevich (D-R) > Langmuir adsorption isotherm. Adsorption kinetics data were modeled using the pseudo-first and pseudo-second order models. The results indicated that pseudo-second order model best described adsorption kinetic data. The thermodynamic parameters (standard Gibbs Free energy (∆Go), standard Enthalpy (∆Ho) and standard Entropy (∆So)) showed that the adsorption process of the metal ions was feasible, non-spontaneous, endothermic and decreased randomness at the sorbent-sorbate interface. The biosorption study showed that Detarium microcarpum shell could be a viable alternative to commercial activated carbon in the removal of potentially toxic elements from aqueous solution.

References

Ahmadpour A, Tahmasbi M, Rohani BT & Amel BJ 2009. Rapid removal of cobalt ion fromaqueous solutions by almond greenhull. J. Hazardous Materials, 166:925-930. Ajmal M, Rao RA, Ahmad K & Ahmad R 2000. Adsorption studies on Citrus reticulate (fruit peel of orange): removal and recovery of Ni (II) from electroplating wastewater”. J. Hazardous Materials, 79: 117-131. Ashraf MA, Abdul W, Karamat MM, Jamil M & Ismail Y 2011. Removal of heavy metalsfrom aqueous solution using mango biomass. .African J. Biotech., 10(11):2163-2171. Babarinde NAA &. Babalola JO 2010. The Biosorption of Pb(II) from solution by elephant grass (Pennisetum purpureum): Kinetic, equilibrium, and thermodynamic studies. Pacific J. Sci. and Tech., 11(1):622-630. Babarinde NAA, Babalola JO & Onabanjo AC 2008. Kinetic, equilibrium, and thermodynamic studies of the biosorption of Pb(II) from solution by Calymperes erosum. Pacific J. Sci. and Tech., 9(2): 621-628. Babarinde NAA, Babalola JO, Ogunfowokan AO & Onabanjo AC 2009. Kinetic, equilibrium and thermodynamic studies of the biosorption of cadmium (II) from solution by Stereophyllum radiculosum. J. Envir.Chem. and Ecotoxico., 91(5): 911-922. Babarinde NAA, Babalola JO, Adegoke J, George EO, Okeke HO& Obagbemi AT2012.Kinetic, equilibrium, and thermodynamic studies of the biosorption of Cd(II), Pb(II), and Zn(II) from aqueous solutions using coconut (Cocos nucifera) Leaf. Pacific J.Sci. and Tech., 13(1):430-442. Babarinde NAA, Babalola JO, Adegoke J, Oyindamola RO, Temidayo OO & OLuwagbemisola O 2012.Biosorption of Cd(II), Pb(II) and Zn(II) from solutionusing Acalypha wilkesiana leaf: equilibrium, kinetics and thermodtnamics. Int. J. Chem.Sci., 5(1):1-9. Babarinde NAA, Babalola JO, Adegoke J, Maraizu U, Ogunbanwo T & Ogunjinrin F 2012.Kinetic, equilibrium and thermodynamic studies of the biosorption of Ni(II), Cr(III) and Co(II) from aqueous solutions using banana (Musa acuminata) leaf. Int. J. Physical Sci., 7(9):1376 - 1385. Dadhaniya PV, Patel AM, Patel MP & Patel RG 2009. A new cationic poly (1-vinyl-v3-ethylImidazolium iodide), P (VEII) hydrogen for the effective removal of chromium (VI) from aqueous solution. J. Macromol. Sci. Part A: Pure and Appl. PolymerChem., 46: 447-454. De la Rosa G, Reynel-Avila HE, Bonilla-Petriciolet A, Cano-Rodríguez I, Velasco-SantosC, Martínez-Elangovan R, Pilip L & Chandraraj K 2008. Biosorption of chromium species by aquatic weeds: Kinetics and mechanism studies. J. Hazardous Matererial, 152: 100-102. Demirbas E, Kobya M & Konukmanc AES 2008. Equilibrum studies for the Almond shell activated carbon adsorption of Cr (VI) from aqueous solution.J. Hazaardous Materials, 154:787-794. Dhabab JM 2011. Removal of Fe (II), Cu (II), Zn (II), and Pb(II) ions from aqueous solutions By Duckweed. J. Oceanography and Marine Science, 2(1):17-22. Egila J. N, Dauda BEN & Jimoh T 2010 Biosorptive removal of cobalt (II) ions from aqueous solution by Amaranthus hydridus L. stalk wastes.African J. Biotech., 9(48): 8192-8198. Egila JN, Dauda BEN, Iyaka YA & Jimoh T 2011. Agricultural waste as a low cost adsorbent for heavy metal removal from wastewater.Int. J. Physical Sci., 6(8): 2152-2157. Ejikeme PM, Okoye AI & Onukwuli OD 2011. Kinetics and Isotherm studies of Cu2+ and Pb2+ions removal from simulated wastewater by Gambeya albida seed shell activated carbon.The African Rev. of Phy., 6: 143-152 El-Ashtoukhy ESZ, Amin NK & Abdelwahab O 2008. Removal of lead (II) andcopper(II)from aqueous solution using pomegranate peel as a new adsorbent.Desalination, 223:162-173 Ertugay N & Bayhan YK 2008. Biosorption of Cr(VI) from aqueous solution by biomass of Agaricus bisporus. J. Hazardous Materials, 154:432-439. Farouk R & Yousef NS 2015. Equilibrium and kinetics studies of adsorption of copper (II) ionson natural biosobent. Int. J. Chem. Engin. and Application, 6(5): 310-324. Freundlich H 1928. Colloid and Capillary Chemistry. E. P. Dutton and Co., New York. Flaviane VK, Leandro VA & Laurent GF 2010. Removal of zinc from aqueous single metalsolution and electroplaiting waste water with wood saw dust and sugar cane bagasse modified with EDTA dianhydride(EDTAD). Journal of Hazardous Material, 176:856-863. Gonen F & Serin SD 2012. Adsorption study on orange peel: Removal of Ni (II) ions fromaqueous solution. African J. Biotech.,11(5):1250-1258. Gong R, Jin Y, Chen F, Chen J & Liu Z (2006). Enhanced malachite green removal from aqueous solution by citric acid modified rice straw. J. Hazaardous Materials, 137: 865-870. Gupta VK, Rastogi A & Nayak A 2010. Adsorption Studies on the Removal of HexavalentChromium from Aqueous solution using a low cost fertilizer industry waste material. J. Colloid Interface Sci., 342:135-141. Hadi NA, Nuru AR & Wong CS 2011. Removal of Cu(II) from Water by Adsorptionon Papaya Seed. Asian J. Transactions on Engin., 1(5): 49-55. Hanan EO, Reham KB & Hanan FA 2010. Usage of some agricultural by-product in the removal of some heavy metals from industrial waste water. J. Philology, 2(3):51-62. Hanif MA, Nadeem R, Bhatti HN, Ahmad NR & Ansari TM 2007. Ni(II) biosorption by Cassiafistula (Golden shower) biomass. J. Hazardous Material, 139(2): 345-355 Ho YS & Mckay G 1999. Pseudo-second order model for sorption process. Process Biotech.,34(5):451-465. Jimoh T, Muriana M & Blessing I 2011.Sorption of Lead (II) and Copper (II) ions from aqueous solution by acid modified and unmodified Gmelina arborea (Verbenaceae) leaves. J. Emerging Trends in Engin. and Appl. Sci., 2(5): 734-740. Jimoh TO, Buoro AT & Muriana M 2012. Utilization of Blighia sapida (Akee apple) pod in theremoval of lead, cadmium and cobalt ions from aqueous solution. J. Envtal. Chem. and Ecotoxico., 4(10): 178-187. Lagergren SZ 1898. Theorie der sogenannten adsorption geloester stoffe. Kungliga SvenskaVetenskapsakademiens. Handlingar, 24:1-39. Langmuir I 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem Soc., 8:1361–403. Laraous S, Meniai AH & Bencheikh LM 2005. Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust. Desalination, 185: 483-490. Liu Y, Sun X & Li B 2010. Adsorption of Hg2+ and Cd2+ by ethylenediamine modified peanut shells. Carbohydr. Poly., 81: 335-339. Mann A, Muhammad G & Abdulkadir NU 2003. Medicinal and economical plants of Nupeland, p. 53. Madhavi GM, Kininge PT, Pillai MM & Sanandam MR 2011. Biosorptive removal of heavymetals (Cd2+, Pb2+ and Cu2+) from aqueous solution by Cassia augustifolia bark.International J. Engin. Sci. and Tech., 3(2): 1642-1647. Meera MS & Ganesan TK 2015. Adsorption isotherm and kinetics studies of cadmium (II) ionsremoval using various activated carbons derived from agricultural bark wastes: Acomparative study. J. Chem. and Phar. Res., 7(4):1194-1200 Musah M, Yisa J, Mann A, Suleiman MAT & Aliyu A 2016. Preparation and characterization ofmesoporous functionalized activated carbon from Bombax buonopozense calyx.Am. J. Innovative Res. and Appl. Sci., 3(2):90-97 Nuhoglu Y & Malkoc E 2009. Thermodynamic and kinectic studies for environmentally friendly Ni (II) biosorption using waste pomace of olive oil factory. Bioresource Tech., 100: 2375–2380. Qadeer R & Akhtar S 2005. Kinetics study of lead ion adsorption on active carbon. Turk. J. Chem., 29: 95-99. Qaiser S, Saleemi AR & Umar M 2009. Biosorption of lead (II) and chromium (VI) on groundnut hull: Equilibrum, kinectics and thermodynamics study. Electr. J. Biotech.,12(4):1-17. Qu R, Zhang Y, Sun C, Wang C, Ji C, Chen H & Yin P 2010. Adsorption of Hg(II) from an aqueous solution by silica-gel supported diethylenetriamine prepared via different routes: kinetics, thermodynamics and isotherms. J. Chem. Eng. Data, 55: 1496-1504. Regina E, Onyewachi OA & Vivano OA 2008. Removal ofsome metal ions from aqueous solution using orange mesocarp. African J. Biotech., 7(17): 3073 – 3076. Renuga DN, Mansusha K & Latitha P 2010. Removal of Hexavalent chromium from aqueous solution using an eco-friendly activated carbon adsorbent. Pelagia Res. Library Advancesin Appl. Sci. Res., 1(3): 247 – 254. Sahranavard M, Ali A, & Mohammad RD 2011. Biosorption of HexavalentChromium ions from Aqueous solutions using Almond Green Hull as a Low-cost Biosorbent. Euro. J. Scientific Res.,58(3):392-400. Sampranpiboon P, Charnkeitkong P & Feng X 2014. Equilibrium isotherm models foradsorptionof Zinc (II) ion from aqueous solution on pulp waste. WSEAS Transaction onEnvir. and Dev., 35–47. Stephen B & Sulochana N 2004. Carbonized jack fruit peel as an adsorbent for the removal of Cd(II) from aqueous solution. Bioresources and Tech.,94:49-52. Sun XF, Wang SG, Liu XW, Gong WX, Bao N, Gao BY, & Zhang HY 2008. Biosorption of Malachite Green from aqueous solutions onto aerobic granules: Kinetic andequilibrium studies. Bioresource Tech., 99: 3475-3483. Uluozlu OD, Sari A & Tuzen M 2010. Biosorption of antimony from aqueous solution by lichen(Physcia tribacia). Chem. Eng. J., 163: 382-388. Wang CC & Lee WH 1996. Separation, characteristics, and biological activities of phenolics in areca fruit.J. Agric. Food Chem., 44: 2014–2019. Wanna S, Pairat K & Wuthikorn S 2009. Pomelo Peel: Agricultural Waste for Biosortion ofCadmium Ions from Aqueous solutions. World Acad. of Sci.,Engin. andTech., 56:287-291. Yusra S & Bhatt HN 2011. Adsorptive removal of direct dyes by low cost rice husk: Effect of treatments and modifications. African J. Biotech., 10(6): 3128-3142.

Highlights